X-ray intensity oscillations occurring during growth of Ge on Ge(111)-a comparison with RHEED

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1989 J. Phys.: Condens. Matter 1 SB213 (http://iopscience.iop.org/0953-8984/1/SB/047) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 27/05/2010 at 11:12

Please note that terms and conditions apply.

X-ray intensity oscillations occurring during growth of Ge on Ge(111)—a comparison with RHEED

R G van Silfhout[†], J W M Frenken[†], J F van der Veen[†], S Ferrer[‡], A Johnson[§], H Derbyshire[§], C Norris[§] and J E Macdonald

† FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands

‡ ESRF, BP 220, 38043 Grenoble Cédex, France

§ Leicester University, Department of Physics, Leicester Road, Leicester LE17RH, UK

Department of Physics, University College, PO Box 78, Cardiff CF1 1XL, UK

Received 28 March 1989

Abstract. The growth of Ge on Ge(111) has been studied *in situ* by x-ray diffraction and reflectivity. For well defined geometries the scattered x-ray intensity is extremely sensitive to atomic-scale surface morphology. For substrate temperatures up to 200 °C oscillations in the reflected and diffracted yields are observed, which are indicative for two-dimensional nucleation. Curves showing reflectivity versus perpendicular momentum transfer Q_z yield the height distribution of the islands. The use of x-rays allows for a straightforward 'single-scattering' interpretation of the intensities, as opposed to the use of reflection high-energy electron diffraction where multiple-scattering effects have to be taken into account.

The Ge(111) crystal consists of bilayers (containing 1.4×10^{15} atoms cm⁻²) separated by a distance of 3.27 Å. A maximum sensitivity to the growth of islands is obtained if

Figure 1. The reflected signal from Ge(111) during Ge deposition. Curve A shows the result from the x-ray experiment (the full curve shows the fit made to the data using a multilevel model). Curve B was given a fixed offset of 200 and shows the result of the RHEED experiment.

there is a destructive interference between x-rays scattered from an island and those scattered from the terrace below. For the 1.13 Å wavelength used, this situation is obtained for an angle of incidence of 5°. The reflected intensity at this relatively high angle is, however, a factor 10^7 lower than that of the incident beam. This necessitates the use of a very intense x-ray source. The experiment described was performed at the wiggler line 9.4 of the Daresbury Synchrotron Radiation Source.

Prior to growth, the Ge(111) substrate was sputtered and annealed. A reflectivity scan as Q_z is varied shows an almost perfectly flat surface. The reflected intensity under destructive interference conditions was measured during deposition using a Knudsen effusion cell. The substrate temperature was held at 200 °C (figure 1, curve A). The period of the oscillation corresponds to the growth of a single bilayer. The general features can be understood if one assumes, for each period, nearly perfect two-dimensional nucleation followed by coalescence of islands. A detailed analysis [1] of the scattered intensity for a two-level surface reveals a parabolic dependence with the deposited amount up to one bilayer, which is consistent with the experimental observation. Intensity oscillations are well known in reflection high-energy electron diffraction (RHEED) [2]. For comparison with our x-ray results the deposition was repeated with RHEED under the same out-of-phase conditions, but at an angle of incidence of 0.5° which was chosen to match the smaller wavelength of the electrons ($\lambda_e = 0.11$ Å). The beam was incident $\approx 4^\circ$ off the $\langle 11\overline{2} \rangle$ azimuth. The result is shown as figure 1, curve B.

The damping of the x-ray intensity oscillations can only be explained by a model including more than two levels [3, 4]. The fit shown in figure 1 as curve A is generated by a multi-level model where every island covers a certain fraction of the level below. In the fit this fraction is allowed to increase with the total amount deposited, as described in [4]. After four periods we find best-fit top-level occupancies of 0.80, 0.16 and 0.03. The model gives a reasonably good overall description of the observed intensity changes and describes the dependence of the intensity oscillation for different angles of incidence also. The RHEED intensity oscillations, however, show a different behaviour: no parabolic shape and almost no damping of the oscillations is observed. This suggests that multiple-scattering effects are important in RHEED [5] and that a dynamical scattering theory has to be used for a proper description of the growth process.

References

- [1] Lent CS and Cohen PI 1984 Surf. Sci. 139 121
- [2] Aarts J and Larsen P K 1987 Surf. Sci. 188 391
- [3] Robinson I K 1986 Phys. Rev. B 33 3830
- [4] Vlieg E, Denier van der Gon A W, van der Veen J F, Macdonald J E and Norris C 1988 Phys. Rev. Lett. 61 2241
- [5] Dobson P J, Joyce B A, Neave J H and Zhang J 1987 J. Cryst. Growth 81 1